References

Research studies supporting fuelling with 2:1 Multiple Transportable Carbohydrates:

  1. Stellingwerff, T & Cox, GR. (2014) 
    Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011.
  2. Wilson. PB., Ingraham, SJ. (2015) 
    Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. [Epub ahead of print].
  3. Currell, K & Jeukendrup, A.E. (2008)
    Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 40(2):275–81.
  4. Triplett, D., Doyle, D., Rupp, J., Benardot, D. (2010) 
    An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 20(2):122–31
  5. Tarpey, M.D., Roberts, J.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2013)
    The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 38(12):1245–53.
  6. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) 
    Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 37(3):425–36.
  7. Baur, D.A., Schroer, A.B., Luden, N.D., Womack, C.J., Smyth, S.A., Saunders, M.J. (2014) 
    Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 46(9):1778–86.
  8. Rowlands, D.S., Thorburn, M.S., Thorp, R.M., Broadbent, S.M., Shi, X. (2008) 
    Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 104:1709–19.
  9. O’Brien, W.J & Rowlands, D.S. (2011) 
    Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 300(1):G181–9.
  10. O’Brien, W.J., Stannard, S.R., Clarke, J.A., Rowlands, D.S. (2013) 
    Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 45(9):1814–24.
  11. Rowlands, D.S., Swift, M., Ros, M., Green, J.G. (2012) 
    Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Applied Physiology, Nutrition, and Metabolism. 37(3): 425-436.
  12. Smith, J.W., Pascoe, D.D., Passe, D., Ruby, B.C., Stewart, L.K., Baker, L.B., et al. (2013)
    Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 45(2):336–41.
  13. Roberts, J.D., Tarpey, M.D., Kass, L.S., Tarpey, R.J., Roberts, M.G. (2014) 
    Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 11(1):1–14.
  14. Jentjens, R.L., Underwood, K., Achten, J., Currell, K., Mann, C.H., Jeukendrup, A.E. (2006)
    Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 100(3):807–16.
  15. Jeukendrup, A.E & Moseley, L. (2010) 
    Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 20(1):112–21.
  16. Davis, J.M., Burgess, W.A., Slentz, C.A., Bartoli, W.P. (1990) 
    Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 51(6):1054–7.
  17. Jentjens, R.L., Venables, M.C., Jeukendrup, A.E. (2004) 
    Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 96(4):1285–91.
  18. Jentjens, R.L., Achten, J., Jeukendrup, A.E. (2004) 
    High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 36(9):1551–8.
  19. Wallis, G.A., Rowlands, D.S., Shaw, C., Jentjens, R.L., Jeukendrup, A.E. (2005)
    Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 37(3):426–32.
  20. Jentjens, R.L., Moseley, L., Waring, R.H., Harding, L.K., Jeukendrup, A.E. (2004) 
    Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 96(4):1277–84.
  21. Jentjens, R.L & Jeukendrup, A.E. (2005) 
    High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 93:485–92.
  22. Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., Taylor, R., Trenell, M.I., Stevenson, E.J., van Loon, L.J. (2016) 
    Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J Appl Physi. [Epub ahead of print].

For reviews see…

Jeukendrup, A.E. (2010) Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. Jul;13(4):452-7.

Rowlands, D.S., Houltham, S., Musa-Veloso, K., Brown, F., Paulionis, L., Bailey, D. (2015) Fructose-Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Med. Nov;45(11):1561-76.

Research studies supporting supplementation with D-Ribose:

  1. Burke, E.R PhD (1999)
    D-Ribose, What You Need to Know. Avery Publishing Group. This review publication contains 46 references from selected peer-reviewed published research papers.
  2. Burke, E.R PhD (2002)
    Serious Cycling. Human Kinetics. Pp 167-169.
  3. Jacob Teitelbaum, Janelle Jandrain and Ryan McGrew (2012)
    Treatment of Chronic Fatigue Syndrome and Fibromyalgia with D-Ribose – An Open-label, Multicenter Study. The Open Pain Journal Pp 32-37. 4th July 2012.

Research studies supporting supplementation with L-Glutamine:

  1. Lacey, JM, Wilmore, DW. (Aug 1990). 
    Is glutamine a conditionally essential amino acid?. Nutrition Reviews. 48 (8): Pp 297–309
  2. Brosnan, JT. (June 2003).
    Interorgan amino acid transport and its regulation. J. Nutr. 133 (6 Suppl 1): Pp 2068–2072
  3. Watford, M. (2015)
    Glutamine and glutamate: Nonessential or essential amino acids?. Animal Nutrition. 1 (3): 119–122.
  4. Yamamoto, T, Shimoyama, T, Kuriyama, M (2016). 
    Dietary and enteral interventions for Crohn’s disease. Current Op in Biotechnology. 44: 69–73
  5. Melis, GC, Ter Wengel, N, Boelens, PG, Van Leeuwen, PA. (2004).
    Glutamine: recent developments in research on the clinical significance of glutamine. Curr. Opin. Clin. Nutr. Metab. Care. 7, 59–70.
  6. Castell, LM, Newsholme, EA. (1997).
    The effects of oral glutamine supplementation on athletes after prolonged, exhaustive exercise. Volume 13, Issues 7-8, Pp 738–742.

Research studies supporting supplementation with HMB:

  1. Passwater, R.A. PhD & Fuller, J. PhD (1997)
    Building Muscle Mass, Performance & Health. Keats Publishing Group. This review publication contains multiple references from selected peer-reviewed published research papers.
  2. Burke, E.R PhD (2002)
    Serious Cycling. Human Kinetics. Pp 167-169.
  3. Williams, M.H. PhD (1998)
    The Ergogenics Edge. Human Kinetics. Pp 210-213.

Research studies supporting supplementation with Beta-Alanine:

  1. Artioli, G.G., Gualano, B., Smith, A., Stout, J. and Lancha Jr, A.H., 2010
    Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc, 42(6), pp.1162-1173.
  2. BAUER, K. and SCHULZ, M., 1994
    Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture. The FEBS Journal, 219(1‐2), pp.43-47
  3. Derave, W., Özdemir, M.S., Harris, R.C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J.A. and Achten, E., 2007
    β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of applied physiology, 103(5), pp.1736-1743
  4. Dunnett, M. and Harris, R.C., 1999
    Influence of oral ß‐alanine and L‐histidine supplementation on the carnosine content of the gluteus medius. Equine veterinary journal, 31(S30), pp.499-504.